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Abstract Temperature and rainfall predicted for the
twenty-first century by global coupled models as report-
ed by IPCC, (2014a, and b) were obtained regionally for
Burkina Faso and through the Paluclim project, 2011–
2014. One of the goals of this project was to assess the
upcoming evolution of malaria transmission dynamics.
From an impact model on malaria risk linked to climate
variability, temperature and rainfall indices were de-
rived.Malaria transmission dynamics were then predict-
ed using the derived temperature and rainfall for the
twenty-first century. Similar to the historical evidence
of rainfall being an important factor for regulating the
seasonal density of malaria vectors, this study also

reports a definitive link between low-frequency rainfall
variability and malaria in the region under the influence
of the Atlantic Multidecadal Oscillation (AMO). This
finding can be used by local stakeholders involved with
the geography-based population health planning.
Moreover, the predicted increase in temperature during
the twenty-first century suggests a reduction of larvae
survival in Burkina Faso and thus the malaria risk. More
generally, the temperature increase could become a new
limiting factor for malaria transmission dynamics in the
Sahel Region (as reported by Mordecai et al. (2013).
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Introduction

Malaria is responsible for 61% of hospitalizations and
30% of deaths yearly in Burkina Faso, which belongs to
the Sahel Region in West Africa. Mortality, primarily
among children under 5 years old, has been steadily
increasing by more than 4% every year. Interestingly,
Paaijmans et al. (2012) and more recently Asare et al.
(2016) reported that warmer pond water temperature
should reduce the vectorial capacity of malaria mosqui-
toes and thereby should reduce the burden due to malaria.

The Paluclim project investigated the impacts of
climate variability and climate change in Burkina Faso
(Fig. 1) for the twenty-first century (Vignolles et al.
2016). This project employed the tele-epidemiology
approach (a term coined byMarechal et al. 2008), which
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required comprehensively combining environmental
and climatological conditions and involving entomolo-
gists to predict the impacts on infectious diseases, in-
cludingmalaria. Data from the space (CNES 2008) were
also used to portray the big picture of the study area.
Indeed, tele-epidemiology is designed to analyze the
relations between climate, environment, and health and
to highlight links between the emergence and spread of
infectious diseases with geospatial data from Earth
Observation Systems satellites (Walz et al. 2015;
UNOOSA 2018).

The tele-epidemiology approach, used in the
Paluclim project, was then applied in this study to
predict malaria in the rural Nouna Region of northern
Burkina Faso. The objective of the present research was
to study the details of the effects of low-frequency
climate variability and change on malaria risk, with a
specific focus on spatio-temporal variability associated
with the Atlantic Multidecadal Oscillation (AMO) and
climate change issues.

The suitable conditions for malaria transmission, ~
71% by Plasmodium falciparum (Gneme et al. 2013),
were derived by studying the relationship between tem-
perature, sporogony, vector survival, and length of the
larval cycle (Dambach et al. 2012).

Moreover, it has been shown that an important pa-
rameter for malaria risk in Burkina Faso is the monthly

total rainfall with an 80-mm threshold for the first month
of a given 3-month sequence of time during the rainy
season (Tourre et al. 2017). Finally, the knowledge of
the AMOphases and its low-frequency variability (1856
to present, obtained from NOAA) may be very impor-
tant for adaptation procedures by regional health infor-
mation systems (HIS) involved in climate change-
related health planning. The AMO changed phases in
the mid-1990s (i.e., from negative to positive values)
and was associated with rainfall increases over the Sahel
(see also Zhang and Delworth 2006; Paz et al. 2008).
According to the climate projections for the twenty-first
century, and preliminary results from models also used
for the CORDEX experiment (2013, courtesy of Dr.
Samuel Somot from CNRM), environmental conditions
are going to change over West Africa (Roudier et al.
2011) particularly temperature.

In this study, a pronounced tendency for a de-
creased development of malaria in the Nouna region
is identified along with the increase of the maximum
mean yearly temperature from numerical models
during the twenty-first century. As such and based
upon output from the Coupled Model Inter-
comparison Project Phase 5 or CMIP-5 (see details
in the next section), different radiative scenarios for
temperature and rainfall variability are compared to
that during the 1983–2011 period.

Burkina Faso

Fig. 1 Localization of the Nouna Region in Burkina Faso (4.1/
3.5°Wand 12.4/13° N) inWest Africa (left). The red hexagons are
the 10 villages where meteorological (i.e., from rain gages and

min-max thermometers) and entomological data was obtained.
This region belongs to the Sahel (i.e., 800 mm of rainfall during
the rainy season from June to September)
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Data and methods

To understand the effects of climatic conditions on
malaria risk, an impact model based on several prior
studies (Craig et al. 1999; Emmert et al. 2011), modified
for the MARA project (Tanser et al. 2003), is used here.
Climate indices (IND) favoring local malaria diffusion
are computed with values going from 0 (or U for un-
suitable) to 1 (or S for suitable). As reported in Craig
et al. (1999), the sigmoidal fuzzy function from IDRISI
(2018) was used to convert climate data between un-
suitable (U) and suitable (S) conditions. The ranges for
the rainfall and temperature indices are then computed
for suitable conditions (see Table 1 in Tourre et al. 2017)
and are from 0 to 10. The normalizedmeans are between
2 and 4 for precipitation and 6 and 8 for temperature as
shown in Fig. 2.

Historical data was then observed, while simulated/
predicted data from different models (see below) were
adjusted from the quantile-quantile method during the
1983–2005 period. Finally, the adjusted values from in
situ data were converted into indices for rainfall (INDp)
and temperature (INDt) for malaria risk.

The prediction and climate scenarios for the twenty-
first century were subsequently obtained through the

global simulations from the Coupled Model Inter-
comparison Project Phase 5 or CMIP-5 (Taylor et al.
2012). More than 300 projections or Representative
Concentration Pathways (RCP) have been analyzed.
For the Paluclim project scenarios, RCP45 and RCP85
were chosen, where RCP45 represents a radiative forc-
ing of 4.5 W/m2 (or watts per unit area) in 2100, equiv-
alent to 660 CO2e (or the concentration of CO2 that
would cause the same level of radiative forcing, in parts
per million by volume, ppmv) and leading to a plateau at
the end of the period. The RCP85 scenario represents a
radiative forcing larger than 8.5 W/m2 on and after
2100, equivalent to 1370 CO2e with a continuous in-
crease. The latter scenario is seen as the most pessimistic
and extreme scenario (i.e., with very little regulations on
greenhouse gas emissions).

For rainfall output, a total of eight models was used,
six of them models were used for Tmin and Tmax
temperatures; all models were obtained from the
Institute Pierre Simon Laplace (IPSL-CM5A5 LR and
MR). Some models have been implemented by the
Canadian Centre for Climate Modeling and Analysis
(CCma-CanESM2), the Centre National de Recherches
Météorologiques (CNRM-CM5), Hadgem2-ES, INM-
CM4, Atmosphere and Ocean Research Institute (The
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Fig. 2 Precipitation index INDp
(top) and temperature index INDt
(bottom) during the 1983–2005
period, after quantile-quantile ad-
justment for the simulated data. In
red are the observations in the
Nouna Region, and in blue are the
mean simulated values. In gray
are the spread or uncertainties
from the models around the mean.
After 1996, the INDp values are
not only larger than observed
values but are also getting out of
the statistical range (2000 until
2004)
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University of Tokyo), and MIROC5 (Model for
Interdisciplinary Research on Climate). The grid-point
systems for all models were 2.5°. The multi-model (or
ensemble) approach was used, to assess environmental
climate conditions associated with malaria risk. Four
grid points were taken around Nouna, from which time
series of average rainfall, and minimum and maximum
temperatures were extracted. Since only one simulation
was used per model, the uncertainties could not be
included in the results. Nevertheless, the multi-model
approach allows assessment of environmental condi-
tions associated with malaria risk during the twenty-
first century (Knutti et al. 2010).

Results and discussion

The capacity for models to reproduce (after the quantile-
quantile adjustment) the indices values for favorable
malaria conditions, and from rainfall and temperature
indices are shown in Fig. 2. The multi-model ensemble
displays a large variation for rainfall INDp index (Fig. 2,
top). The blue curve is the mean for historical simula-
tion, and the red curve is the mean from observations
(i.e., it is the precipitation index for favorable conditions
for malaria development during 1983–2005). Despite
the large dispersion (shaded area, representing the mod-
el uncertainties), the index is outside the possible values
particularly during the positive phase of the AMO, post-
1996. This strongly suggests a possible underestimation
of rainfall amount by the models. The latter must modify
the values of the index. Nevertheless, this is not the case
for the INDt index (Fig. 2, bottom), where simulated and
observed values are much more coherent, i.e., with a
much smaller spread.

The lack of the AMO climate signal is obvious when
the probability density function of the INDp (according
to the observed and simulated AMO phases) is
displayed for historical values during 1983–2005
(Fig. 3, top). The observed AMO anomalies for the
1983–2005 period are negative from 1983 to 1996 and
positive from 1996 to 2005.

Dark (light) blue curves are for mean simulations
when the AMO is positive (negative). The dark/light
gray shaded zones are for the spread from the mean
during positive (negative) phase of the AMO. In the
middle and during the negative phase of the simulated
AMO, the density peak is clearly established for an
index value of 2 (light blue curve). On the contrary

during a simulated positive AMO (dark blue curve),
the density curve displays a plateau with index values
of 2–3. For the observed values (red curve), the index
values are between 3 and 4. It can be seen that there is a
lag between simulated and observed values. In general,
the favored hypothesis from the probability density
functions is that the simulated rainy seasons are shorter
during the positive phase of AMO. Nevertheless, the
total amount of observed rainfall during the latter on
interannual time scales could be increased (Paz et al.
2008). Since the AMO is a multi-decadal climate signal,
variability of the mean, averaged over 30-year periods,
was computed for the 2010–2100 period using the RCP
45 and RCP85 scenarios. The mean for the density
functions along with their spread (gray shading) is
displayed in Fig. 3 (RCP45 middle, and RCP85
bottom).

Except for the 2040–2070 period and for the
RCP85 scenario, the distribution is somewhat equiv-
alent to the one obtained during the AMO negative
phase (historical data). In general, the rainfall condi-
tions are not favorable, but the spread around the
means is quite large. Under the RCP85 scenario, the
2040–2070 (Fig. 3, bottom, middle), the probability
density function distribution resembles somewhat to
that of historical distribution during AMO-positive
phases with an index peak at 3.

In Fig. 4, the same information as for Fig. 3 is shown
but for INDt. At the top of Fig. 4, the historical values of
the index are shown also as a function of AMO phases,
whilst at the bottom, the density functions are displayed
every 30 years starting in 2010 (middle for the RCP45
scenario, bottom for the RCP 85 scenario). Only the red
curve (Fig. 4, top) displays a maximum value of 7 for
the density function during the AMO-positive phase.
For the other curves in Fig. 4 (top), most of the peaks
for the density functions are for a temperature index of
6. For a 30-year period starting in 2010 (Fig. 4, bottom
left) and for the two scenarios RCP45 (middle) and
RCP85 (bottom), the conditions are already less favor-
able than during the historical period with a peak of 5 for
the index. On average, the RCP45 does not show major
changes before 2070, the time during which the temper-
ature conditions should start to make it difficult for the
survival of larvae and adult mosquitoes and thus of
malaria diffusion. On the contrary, the RCP85 scenario
displays changes as soon as 2040 with a very low peak
value of 3 for the index. The 2070–2100 period displays
an extremely low peak value of 1 for the index. Thus,
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whatever the rainfall conditions between 2070 and 2100
might be, the suitability of environmental conditions
could be strongly diminished for malaria transmission.

Large interannual variability is evident for INDp
(Fig. 5, left) with a small tendency leading to unfavor-
able conditions when compared to the historical period.
Before 2040, the RCP85 scenario seems more favorable
than the RCP45 scenario. However, due to the large
spread of INDp, no significant conclusions for malaria
risk can be drawn. On the contrary, the tendency of the
INDt (Fig. 5, right) indicates less and less favorable
conditions for malaria in the Nouna Region, for both
RCP45 and RCP85 scenarios. This large tendency is
associated with the evolution of the annual maximum
temperature.

Finally, the temperature evolution itself is displayed
in Fig. 6 for the period 1980–2100, with the dashed

orange line at the bottom representing the temperature
mean for the so-called historical period (1983–2005),
while the dashed red line is the limit for the temperature
at which the conditions will become extremely unfavor-
able (2090). The RCP45 scenario in light blue is for an
increase of the mean temperature in Nouna of 3 °C,
while the RCP85 scenario in dark blue is for more than
5 °C. The temperature thus attained of 40 °C (RCP85) at
the end of the twenty-first century explains the rapidly
decreasing values of the INDt index in Fig. 5.

No visual signs for malaria risk increase are linked to
rainfall. Indeed, the foreseen rainfall distribution is
somewhat similar to that during the 1983–2005 period.
Thus, over the Nouna Region, the climate tendency,
without the natural variability (including that of the
AMO), does not change significantly the rainfall index
for changes in malaria risk (Figs. 2 and 3).

INDp (Precipitation)

Fig. 3 (Top) Probability density
function for INDp values
(abscissa) during the 1983–2005
period, considering the influence
of AMO phases. In red (orange)
are observations during years
when the AMO is positive (nega-
tive). Dark (light) blue curves are
for mean simulations when the
AMO is positive (negative). The
dark/light gray shaded zones are
for the spread from the mean
during positive (negative) phase
of the AMO. (middle) The density
distribution of the index is
displayed for RCP45 every
30 years starting in 2010.
(Bottom) The density distribution
of the index is displayed for the
RCP85 scenario also starting in
2010. The blue curve is for the
mean, and the gray shading rep-
resents the spread (uncertainties)
around the mean. Peak values of
the index are identified by a line
for each 30-year period. Values
for the index are on the abscissa
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The malaria risk evolution is assessed using slices of
30-year period for both scenarios. The temperature evo-
lution during the 2010–2040 displays conditions already
less favorable than during the historical period. The
peak for the density function is indeed attained for an
index of 5 (and for both scenarios). For mean values, the
RCP45 scenario does not reflect major changes before
the 2070–2100 period, when temperature is already
highly limiting the malaria risks. On the contrary, the
RCP85 scenario leads to major changes as soon as the
middle of the twenty-first century with a peak of 3.
During the 2070–2100 period, temperature conditions
are associated with a very low index of 1 (Fig. 5).

Conclusions

The AMO and its linkages with rainfall variability are
important for malaria evolution. It has been found
that during the 1983–2012 period, monsoon seasons

were shorter from 1983 to 1996 and then lasted
longer after 1996 when the AMO was positive
(Tourre et al. 2017) favoring malaria development.

Whilst climate change could modify the AMO
variability, it could also, through temperature in-
crease, modify the evolution of several human infec-
tious diseases, including malaria, cholera, and den-
gue. In Burkina Faso, for example, after a continuous
increase of malaria transmission up to 60 cases per
1000 humans in 2001, it has held steady since then at
40 cases per 1000 in humans (WHO 2003, 2008).
Although it is known that a major effort has been
made to introduce widespread use of impregnated
bed nets during this time, the complexities of the
epidemiology of malaria present difficult challenges
for establishing a distinction between climatic and
non-climatic causal effects (Ostfeld et al. 2008).

Based on the output of the models, large mean
monthly temperature increases in the Nouna Region
are predicted to lead to malaria risk reduction;

Fig. 4 Same as in Fig. 3 except
for the probability density
function of the temperature index
or INDt
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Fig. 5 Mean evolution (with spread) of the yearly index values for
favorable conditions of the rainfall index INDp (left) and the
temperature index INDt (right) for the 1983–2100 period. Values
of the indices are on the ordinates. Post-2005 (highlighted by the
black rectangle), the evolutions are for the climate scenarios

RCP45 (top) and RCP85 (bottom). The dark blue (light blue)
shaded areas are for values above (below) the means computed
for the 1983–2005 historical period. Within the black rectangle
results until 2005 are very similar for both scenarios (RCP45 and
RCP85)
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Fig. 6 Evolution of mean maximum temperature from the multi-
model’s ensemble with two different RCP scenarios as described
in the text. Once again until 2005, evolutions are similar (within
gray-shaded rectangle) and then spread rapidly after 2030 when

RCP45 (light blue) and RCP85 (dark blue) scenarios are com-
pared. The red dashed line is for the upper limit of Tx for malaria
diffusion, which is attained hear the end of the twenty-first century
(around 2085) by using the RCP85 scenario
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temperature thus becomes a limiting factor for malaria
risks in the face of predicted climate change in the
Nouna region of Burkina Faso. For example, the dom-
inant A. gambiae, which was sampled during this study
does not adapt well to hotter conditions (Kirby and
Lindsay 2004). This is a very important change to
consider since malaria has always been of great public
health concern. It seems likely that B…malaria will be a
vector-borne disease that is both sensitive to long-term
climate change reductions, and that it will also vary
seasonally in highly endemic areas^ (Patz et al. 2003).

In this paper, the results suggest the potential for
malaria (and other infectious diseases of Africa) to
invade southern Europe where conditions may be-
come more suitable owing to lower maximum tem-
peratures than in the Sahel for the vector mosquitoes’
ecological and meteorological niches. For example,
an assessment in Portugal projected an increase in the
number of days per year suitable for malaria trans-
mission (Casimiro et al. 2006). Thus, climatic change
factors may favor transmission, increased vector den-
sity, and re-emergence of malaria in Europe (Rogers
and Randolph 2000). It is recognized that socio-
economic factors, building codes, land use, and treat-
ment could also slow down the likelihood of climate-
related epidemics. In any case whilst the rainfall
amount and threshold certainly determine mosquito
abundance, temperature will have its major effect on
development of the malaria parasites in the vector.
Malaria risk may thus be considerably reduced at the
end of the twenty-first century in the Sahel as com-
pared to current risk. Faruque et al. (2014) have
developed a web-based real-time syndromic surveil-
lance system, known as GeoMedStat, with disease
and environmental condition mapping capabilities
that may be of value to epidemiologists and public
health officials for interpretation and analysis of both
routine and new outbreak-related health data that can
potentially be linked to climate change impacts
(Taylor et al. 2016). The Healthy Futures project in
East Africa adopted basically the same approach for
framing infectious disease risks (Oppenheimer et al.
2014) and becomes a key vehicle for communicating
main results through its Healthy Futures atlas. The
latter obtained input from stakeholders, including
health decision makers in east African countries like
Burundi, Kenya, Rwanda, Tanzania, and Uganda. In
the climate change context, the same activity could
be developed in the Sahel over West Africa.
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